Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## X-ray powder study of cis-dichloridobis(methylamine)platinum(II)

Sergei D. Kirik* and Aleksandr K. Starkov<br>Institute of Chemistry and Chemical Technology, 660049 Krasnoyarsk, Russian Federation<br>Correspondence e-mail: kirik@icct.ru

Received 28 August 2007; accepted 2 October 2007
Key indicators: powder X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.019 \AA ; R$ factor $=$ 0.059; $w R$ factor $=0.080$; data-to-parameter ratio $=26.3$.

The title compound, cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{2}\right]$, was obtained from the reaction of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ with $\mathrm{CH}_{3} \mathrm{NH}_{2} \cdot \mathrm{HCl}$ and $\mathrm{CH}_{3} \mathrm{COOK}$. The single-crystal structure has been reported previously [Wimmer, Wimmer, Jaud, Johnson \& Castan (1988). Inorg. Chim. Acta, 144, 25-30], but no three-dimensional coordinates are available. We have carried out an ab initio crystal structure determination using X-ray powder diffraction techniques. The crystal structure consists of discrete molecules, with the $\mathrm{Pt}^{\mathrm{II}}$ atom in a slightly distorted square-planar coordination environment. The methyl groups lie on the same side of the plane defined by the two N and two Cl atoms. Molecules are connected via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds to form two-dimensional layers perpendicular to the $b$ axis. The methylamine groups protrude from these layers, forming organic interlayers.

## Related literature

The title compound was previously reported by Watt et al. (1967) and Wimmer et al. (1988). For related compounds, see: Arpalahti et al. (1988); Clere (1974); Clere \& Hoechele (1973); Dhara (1970); Gildengershel (1956); Grinberg \& Gildengershel (1951); Kirik \& Starkov (2007); Kirik et al. (1996); Wells (1984). Searches were conducted using the Cambridge Structural Database (Version 5.28; Allen, 2002) and the Inorganic Crystal Structure Database (Version 2007-1; ICSD, 2007). X-ray powder diffraction data have been deposited in the JCPDS-ICDD PDF-2 database (ICDD, 2005). For analysis techniques, see: Kirik (1985); Kirik et al. (1979); Le Bail et al. (1988); Rietveld (1969); Visser (1969); Wiles \& Young (1981).

## Experimental

Crystal data
$\left[\mathrm{PtCl}_{2}\left(\mathrm{CH}_{5} \mathrm{~N}\right)_{2}\right]$
$M_{r}=328.10$
Monoclinic, $P 2_{1} / n$
$a=7.4512$ (1) $\AA$
$b=15.7995$ (2) $\AA$
$c=6.3015$ (1) $\AA$
$\beta=99.930$ (3) ${ }^{\circ}$
$V=730.73(2) \AA^{3}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$T=293 \mathrm{~K}$
Specimen shape: circular flate plate
$20.0 \times 20.0 \times 0.5 \mathrm{~mm}$
Specimen prepared at 293 K and 101 kPa
Particle morphology: thin powder, yellow

## Data collection

NPO (Burevestnik, USSR) DRON
Specimen mounted in reflection mode
Specimen mounting: packed powder pellet

## Refinement

$R_{\mathrm{p}}=0.059$
Profile function: Pearson VII (Wiles \& Young, 1981)
$R_{\mathrm{wp}}=0.080$
$R_{\text {exp }}=0.056$
$R_{\mathrm{B}}=0.035$
$S=1.43$
Wavelength of incident radiation: 1.54056 A

Excluded region(s): none

Scan method: $\theta / 2 \theta$
$2 \theta_{\text {min }}=9.0,2 \theta_{\text {max }}=115.0^{\circ}$
Increment in $2 \theta=0.02^{\circ}$

1001 reflections
38 parameters
H -atom parameters not refined
Preferred orientation correction: March-Dollase (Dollase, 1986)

Table 1
Selected geometric parameters ( $\AA \AA^{\circ}$ ).

| $\mathrm{Pt} 1-\mathrm{Cl} 1$ | $2.303(5)$ | $\mathrm{Pt} 1-\mathrm{N} 1$ | $2.083(14)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{Pt} 1-\mathrm{Cl} 2$ | $2.343(4)$ | $\mathrm{Pt} 1-\mathrm{N} 2$ | $2.088(12)$ |
|  |  |  |  |
|  |  |  | $88.0(2)$ |
| $\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{Cl} 2$ | $92.5(2)$ | $\mathrm{Cl} 2-\mathrm{Pt} 1-\mathrm{N} 1$ | $90.0(4)$ |
| $\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{N} 2$ | $89.5(2)$ | $\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{N} 2$ |  |

Symmetry code: (i) $-x+2,-y,-z+2$.

Table 2
Hydrogen-bond geometry ( ${ }^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 2^{\text {ii }}$ | 0.90 | 2.80 | $3.517(13)$ | 138 |
| $\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{C} 2^{\text {iii }}$ | 0.90 | 2.48 | $3.311(10)$ | 154 |
| $\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 2^{\text {iii }}$ | 0.90 | 2.70 | $3.569(9)$ | 163 |
| $\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 2^{\mathrm{i}}$ | 0.90 | 2.83 | $3.462(15)$ | 128 |

Symmetry codes: (i) $-x+2,-y,-z+2$; (ii) $-x+1,-y,-z+2$; (iii) $x, y, z-1$.
Data collection: DRON-4 data collection software; cell refinement: POWDER (Kirik et al., 1979); data reduction: DRON-4 data collection software; program(s) used to solve structure: modified $D B W M$ (Wiles \& Young, 1981); program(s) used to refine structure: modified $D B W M$; molecular graphics: SHELXTL (Siemens, 1989); software used to prepare material for publication: SHELXTL.

The preparation of the X-ray powder diffraction data was supported by the ICDD (Grant-in-Aid 9310) and structure solution by grant RFBR-KSF 07-0396805.

[^0]
## metal-organic compounds

## References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Arpalahti, J., Lippert, B., Schollhorn, H. \& Thewalt, U. (1988). Inorg. Chim. Acta, 153, 45-49.
Clere, M. J. (1974). Coord. Chem. Rev. 12, 349-405.
Clere, M. J. \& Hoeshele, J. D. (1973). Bioinorg. Chem. 2, 187-210.
Dhara, S. C. (1970). Indian J. Chem. 8, 193-200.
Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.
Gildengershel, H. I. (1956). Zh. Neorg. Khim. 1, 400-405.
Grinberg, A. A. \& Gildengershel, H. I. (1951). Izv. Sekt. Platiny Drugikh Blagorodn. Met. Inst. Obshch. Neorg. Khim. Akad. Nauk USSR, 26, 115123.

ICDD (2005). PDF-2. International Centre for Diffraction Data, Newtown Square, Pennsylvania, USA. http://www.icdd.com
ICSD (2007). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany, and the National Institute of Standards and Technology (NIST), USA. http://www.fiz-karlsruhe.de/icsd.html

Kirik, S. D. (1985). Kristallografiya, 30, 185-187.
Kirik, S. D., Borisov, S. V. \& Fedorov, V. E. (1979). Zh. Strukt. Khim. 20, 359364.

Kirik, S. D., Solovyov, L. A., Blokhin, A. I., Yakimov, I. S. \& Blokhina, M. L. (1996). Acta Cryst. B52, 909-916.

Kirik, S. D. \& Starkov, A. K. (2007). Acta Cryst. E63, m1705-m1706.
Le Bail, A., Duroy, H. \& Fourquet, J. L. (1988). Mater. Res. Bull. 23, 447-452.
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.
Siemens (1989). SHELXTL. Version 5.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Visser, J. W. (1969). J. Appl. Cryst. 2, 89-95.
Watt, G. W., Hutchinson, B. B. \& Kett, D. S. (1967). J. Am. Chem. Soc. 89, 2007-2011.
Wells, A. F. (1984). Structural Inorganic Chemistry, 5th ed., Russian translation, 3, 236-242.. Oxford: Clarendon Press.
Wiles, D. B. \& Young, R. A. (1981). J. Appl. Cryst. 14, 149-151.
Wimmer, S., Wimmer, J., Jaud, J., Johnson, N. P. \& Castan, P. (1988). Inorg. Chim. Acta, 144, 25-30.

## supplementary materials

Acta Cryst. (2007). E63, m2685-m2686 [ doi:10.1107/S1600536807048428 ]

## X-ray powder study of cis-dichloridobis(methylamine)platinum(II)

## S. D. Kirik and A. K. Starkov

## Comment

The title complex, cis- $\left[\operatorname{Pt}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$, has attracted attention due to its biological activity especially in connection with cancer chemotherapy (Clere \& Hoechele, 1973; Clere, 1974). Reports on cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$ can be found in the literature as early as the nineteen fifties (Grinberg \& Gildengershel, 1951; Gildengershel, 1956). X-ray diffraction data were published by Watt et al. (1967) and a single-crystal structure was determined by Wimmer et al. (1988). This group found the existence of two forms A and B. Concisely the form A is build from molecules cis- $\left[\operatorname{Pt}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$ in the conformation where both methyl groups lie on the same side of the plane delimited by the two chloride and the two nitrogen atoms (motif A ). The form B consists of molecules of two possible conformations: above mentioned motif A and a motif B where methyl groups are on the both side of "platinum" plane. Unfortunately the publication (Wimmer et al., 1988) does not present the 3-D coordinates of the structures, and that hinders the detailed analysis of reasons for the different types of conformations. Here we present the results of crystal structure determination of cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$ in form A obtained applying another synthetic approach without using AgI as it was done by Wimmer et al. (1988) following Dhara (1970). Another important feature follows from application of the X-ray powder technique that allows ascribing the structure to bulk sample of the substance.

The crystal structure of cis-bis(metylamine) dichloro platimun(II) consists of discrete molecules. The geometry of the molecule is presented in Fig. 2. The Pt atom has slightly distorted square-planar coordination enviroment consisting of two N and two Cl atoms. The torsion angle $\mathrm{Cl} 2-\mathrm{Cl} 1-\mathrm{N} 1-\mathrm{N} 2=177.5^{\circ}$. The distances $\mathrm{Pt} 1-\mathrm{N} 1, \mathrm{Pt} 1-\mathrm{N} 2, \mathrm{Pt} 1-\mathrm{Cl} 1$ and $\mathrm{Pt} 1 — \mathrm{Cl} 2$ are 2.083 (14) $\AA, 2.088$ (12) $\AA, 2.303$ (5) $\AA$ and 2.343 (4) $\AA$ respectively and these correspond well to known in literature values (Arpalahti et al., 1988; Wimmer et al., 1988; Kirik et al., 1996; Wells, 1984; Allen, 2002; ICSD, 2007). Metylamine as a ligand does not induce essential distortions of the molecule. The $\mathrm{N} 1 — \mathrm{Pt} 1 — \mathrm{~N} 2$ angle is $90.0(4)^{\circ} . \mathrm{The} \mathrm{N} \cdots \mathrm{Cl}$ contacts in the molecule are of 3.081 (16) $\AA$ and 3.095 (15) $\AA$. Methyl-groups are oriented to one side of the $\mathrm{PtN}_{2} \mathrm{Cl}_{2}$ plane. Molecules conjugate in pairs due to $(\mathrm{Cl} \cdots \mathrm{H}-\mathrm{N})$ intermolecular bounding with centrosymmetric orientation respectively each other. $\mathrm{N} \cdots \mathrm{Cl}$ contacts between nearest molecules are of $3.296(16) \AA$ and 3.462 (16) $\AA$. The shortest ( $\mathrm{Pt} \cdots \mathrm{Pt}$ ) distance in pairs equals to 3.372 (2) $\AA$. The pairs comprise double layers stretched along (ac)-plane with methylamine ligands protruding from layers forming organic interlayers (Fig. 3). This type of packing is also typical for other methylamine containing compound (Kirik \& Starkov, 2007).

## Experimental

For the preparation of cis-[ $\left.\mathrm{Pt}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$ the salt $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ in amount of 4 g was dissolved in 20 ml of water. Then 3 g of $\mathrm{CH}_{3} \mathrm{NH}_{2} \cdot \mathrm{HCl}$ and $4 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOK}$ were added to the solution. The mixture was slightly heated until solution became colorless and then cooled down to room temperature. The solution was kept during 3 h at room temperature, pH was adjusted close to 8 by KOH solution. The light yellow precipitate was filtered, washed and dried. Elemental chemical analysis confirmed the chemical formula of the substance.

## supplementary materials

## Refinement

The structure determination was carried out by the X-ray powder diffraction technique. The experimental data were collected using DRON-4 automatic diffractometer, equipped with a secondary flat graphite monochromator in conjunction with a scintillation detector. $\mathrm{Cu} K \alpha$ radiation was used $\left(\lambda_{1}=1.54056 \AA, \lambda_{2}=1.54439 \AA\right)$. The sample was prepared by top-loading the standard quartz sample holder with cutting the excess of well grained substance. The diffraction pattern was scanned with the step of $0.02^{\circ} 2 \theta$ and counting time of 5 sec ./step in the most informative angular range from $9^{\circ}$ to $115 \% 2 \theta$ at room temperature. Corundum was used as the external standard. The powder pattern of cis-bis(methylamine) dichloro platimun(II) is presented in Fig. 1. X-ray powder diffraction data have been deposited in JCPDS-ICDD PDF2 database (ICDD, 2005). Cell parameters were obtained from d-spaces by indexing and refining using programs described in (Visser, 1969; Kirik et al., 1979). The space group was determined from the analysis of systematic absences. The structural investigations were carried out using a full-profile structure analysis package based on a modified version of the Rietveld refinement program DBWS-9006PC (Wiles \& Young, 1981; Kirik, 1985). The intensities of 50 reflections were estimated from the powder pattern by means of the full-profile fitting procedure (Le Bail et al., 1988) and used in the Patterson synthesis. Atoms of Pt and Cl were located directly from the Patterson map. Positions of light atoms N and C were defined from a difference Fourier synthesis. The final refinement was carried out by Rietveld method (Rietveld, 1969; Wiles \& Young, 1981). H-atoms were not located, but they were included in the refined structure models and rigidly connected to their C and N atoms with $\mathrm{N}-\mathrm{H}$ $=0.90$ and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=0.152 \AA^{2}$.

Figures


Fig. 1. Observed (dots), calculated (superimposed solid) and difference profiles after the Rietveld refinement. The reflection positions are marked by ticks.

Fig. 2. The molecular structure of cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$ shown as a ball and stick respentation. Dashed lines indicate intramolecular interactions.

Fig. 3. Part of the crystal structure of cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$ with hydrogen bonds shown as dashed lines.

## cis-dichloridobis(methylamine)platinum(II)

## Crystal data

$\left[\mathrm{PtCl}_{2}\left(\mathrm{CH}_{5} \mathrm{~N}\right)_{2}\right]$
$M_{r}=328.10$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=7.4512$ (1) $\AA$
$b=15.7995$ (2) $\AA$
$c=6.3015(1) \AA$
$\beta=99.930(3)^{\circ}$
$V=730.73(2) \AA^{3}$
$Z=4$

## Data collection

DRON-4 powder
diffractometer
Monochromator: graphite
Specimen mounting: packed powder pellet
Specimen mounted in reflection mode

## Refinement

## Refinement on $F^{2}$

Least-squares matrix: full
$R_{\mathrm{p}}=0.059$
$R_{\mathrm{wp}}=0.080$
$R_{\exp }=0.056$
$R_{\mathrm{B}}=0.035$
$S=1.43$
Wavelength of incident radiation: $1.54056 \AA$
$F_{000}=592.0$
Final cell parameters are obtained from the Rietveld refinement
$D_{\mathrm{x}}=2.982 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.5418 \AA$
$T=293 \mathrm{~K}$
Specimen shape: circular flate plate
$20.0 \times 20.0 \times 0.5 \mathrm{~mm}$
Specimen prepared at 101 kPa
Specimen prepared at 293 K
Particle morphology: thin powder, yellow

Scan method: ?
$T=293 \mathrm{~K}$
$2 \theta_{\text {min }}=9.0,2 \theta_{\text {max }}=115.0^{\circ}$
Increment in $2 \theta=0.02^{\circ}$

Excluded region(s): none
Profile function: Pearson VII (Wiles \& Young, 1981
38 parameters
H -atom parameters not refined
Weighting scheme based on measured s.u.'s ?
$(\Delta / \sigma)_{\max }=0.1$
Extinction correction: ?
Preferred orientation correction: March-Dollase correction (Dollase, 1986)

## Special details

Refinement. R_prof-backgr $=0.059$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Pt1 | $0.8950(2)$ | $0.0946(1)$ | $0.9978(2)$ | $0.0121^{*}$ |
| C11 | $1.1570(6)$ | $0.1223(4)$ | $1.2400(6)$ | $0.0197^{*}$ |
| C12 | $0.7322(5)$ | $0.0594(3)$ | $1.2720(6)$ | $0.0186^{*}$ |

## supplementary materials

| N1 | $0.6610(13)$ | $0.0672(10)$ | $0.7760(14)$ | $0.0234^{*}$ |
| :--- | :--- | :--- | :--- | :--- |
| H1A | $0.6022(13)$ | $0.0245(10)$ | $0.8290(14)$ | $0.152^{*}$ |
| H1B | $0.6954(13)$ | $0.0484(10)$ | $0.6543(14)$ | $0.152^{*}$ |
| C2 | $1.0380(12)$ | $0.2250(11)$ | $0.7050(12)$ | $0.026^{*}$ |
| H2C | $1.1018(12)$ | $0.2353(11)$ | $0.5875(12)$ | $0.152^{*}$ |
| H2D | $0.9164(12)$ | $0.2470(11)$ | $0.6698(12)$ | $0.152^{*}$ |
| H2E | $1.1007(12)$ | $0.2525(11)$ | $0.8324(12)$ | $0.152^{*}$ |
| N2 | $1.0300(11)$ | $0.1280(10)$ | $0.7460(10)$ | $0.0231^{*}$ |
| H2A | $0.9738(11)$ | $0.1028(10)$ | $0.6245(10)$ | $0.152^{*}$ |
| H2B | $1.1446(11)$ | $0.1078(10)$ | $0.7751(10)$ | $0.152^{*}$ |
| C1 | $0.5240(12)$ | $0.1410(9)$ | $0.7160(10)$ | $0.0237^{*}$ |
| H1C | $0.4220(12)$ | $0.1214(9)$ | $0.6134(10)$ | $0.152^{*}$ |
| H1D | $0.4823(12)$ | $0.1606(9)$ | $0.8432(10)$ | $0.152^{*}$ |
| H1E | $0.5831(12)$ | $0.1865(9)$ | $0.6543(10)$ | $0.152^{*}$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{Pt} 1-\mathrm{Cl} 1$ | 2.303 (5) | $\mathrm{Cl} 2-\mathrm{H} 2 \mathrm{~B}^{\text {i }}$ | 2.829 (16) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Pt} 1-\mathrm{Cl} 2$ | 2.343 (4) | N1-H1A | 0.90 (1) |
| Pt1-N1 | 2.083 (14) | N1-H1B | 0.90 (1) |
| $\mathrm{Pt} 1-\mathrm{N} 2$ | 2.088 (12) | N2-H2A | 0.90 (1) |
| N1-C1 | 1.553 (18) | $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$ | 0.90 (1) |
| N2-C2 | 1.557 (25) | C1-H1C | 0.96 (1) |
| $\mathrm{Pt} 1-\mathrm{Pt} 1^{\text {i }}$ | 3.372 (2) | C1-H1D | 0.96 (1) |
| $\mathrm{Cl} 1-\mathrm{H} 2 \mathrm{~A}^{\mathrm{ii}}$ | 2.995 (4) | C1-H1E | 0.96 (1) |
| $\mathrm{Cl1}-\mathrm{H} 1 \mathrm{~A}^{\text {i }}$ | 3.010 (15) | C2-H2C | 0.96 (1) |
| Cl1-H2B | 2.924 (4) | C2-H2D | 0.96 (1) |
| $\mathrm{Cl} 1-\mathrm{H} 1 \mathrm{~B}^{\text {i }}$ | 2.945 (16) | C2-H2E | 0.96 (1) |
| Cl1-H2B | 2.924 (4) |  |  |
| Cl1-Pt1-Cl2 | 92.5 (2) | $\mathrm{Pt1}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$ | 108.6 (6) |
| $\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{N} 2$ | 89.5 (2) | $\mathrm{Pt1}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$ | 108.6 (6) |
| $\mathrm{Cl} 2-\mathrm{Pt} 1-\mathrm{N} 1$ | 88.0 (2) | $\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$ | 109.4 (14) |
| $\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{N} 2$ | 90.0 (4) | N1-C1-H1D | 109.4 (6) |
| $\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1$ | 116.5 (6) | N1-C1-H1E | 109.4 (6) |
| $\mathrm{Pt} 1-\mathrm{N} 2-\mathrm{C} 2$ | 114.3 (6) | $\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$ | 109.4 (16) |
| $\mathrm{Pt1}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$ | 108.1 (6) | $\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$ | 109.4 (15) |
| Pt1-N1—H1B | 108.1 (6) | N2-C2-H2E | 109.4 (14) |

Symmetry codes: (i) $-x+2,-y,-z+2$; (ii) $x, y, z+1$.

Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl2} 2^{\mathrm{iii}}$ | 0.90 | 2.80 | $3.517(13)$ | 138 |
| $\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Cl2} 2^{\text {iv }}$ | 0.90 | 2.48 | $3.311(10)$ | 154 |
| $\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Cl2} 2^{\text {iv }}$ | 0.90 | 2.70 | $3.569(9)$ | 163 |
| $\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Cl2}^{\mathrm{i}}$ | 0.90 | 2.83 | $3.462(15)$ | 128 |
| Symmetry codes: (iii) $-x+1,-y,-z+2 ;($ iv $) x, y, z-1 ;(\mathrm{i})-x+2,-y,-z+2$. |  |  |  |  |

Fig. 1


Fig. 2


Fig. 3



[^0]:    Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2492).

